Тканевое дыхание - Definition. Was ist Тканевое дыхание
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Тканевое дыхание - definition

БИОХИМИЧЕСКОЕ РАСЩЕПЛЕНИЕ С ВЫДЕЛЕНИЕМ ЭНЕРГИИ
Тканевое дыхание; Аэробное дыхание; Биологическое окисление; Дыхание клетки; Внутреннее дыхание; Окисление биологическое
  • Схема гликолиза

Тканевое дыхание         

клеточное дыхание, совокупность ферментативных процессов, протекающих при участии кислорода воздуха в клетках органов и тканей, в результате чего продукты расщепления углеводов, жиров, белков окисляются до углекислого газа и воды, а значит, часть освобождающейся энергии запасается в форме богатых энергией, или макроэргических соединений (См. Макроэргические соединения). Т. д. отличают от внешнего дыхания (См. Дыхание) - совокупности физиологических процессов, обеспечивающих поступление в организм кислорода и выведение из него углекислого газа. Многие ферменты, катализирующие эти реакции, находятся в особых клеточных органоидах - митохондриях (См. Митохондрии).

На все проявления жизни (См. Жизнь) - рост, движение, раздражимость, самовоспроизведение и др. - организм расходует энергию. Формой энергии, пригодной для использования клетками, является энергия химических связей (главным образом фосфатных) в макроэргических соединениях - аденозинтрифосфорной кислоте (АТФ) и др. Для синтеза АТФ необходим приток энергии извне. По способам извлечения энергии существует принципиальное различие между автотрофными организмами (См. Автотрофные организмы) и гетеротрофными организмами (См. Гетеротрофные организмы). Клетки зелёных растений - наиболее типичных автотрофов - в процессе фотосинтеза используют энергию солнечного света для синтеза АТФ и глюкозы. (Образование из глюкозы более сложных молекул происходит в клетках растений также в процессе Т. д.) В клетках гетеротрофов - животных и человека - единственным источником энергии является энергия химических связей молекул пищевых веществ. Молекулы различных соединений, выполняющие роль биологического "топлива" (глюкоза, жирные кислоты, некоторые аминокислоты), образовавшись в клетках животного организма или поступив в кровь из пищеварительного тракта, претерпевают ряд последовательных химических превращений. В процессе Т. д. можно наметить три основные стадии: 1) окислительное образование ацетилкофермента А (активная форма уксусной кислоты) из пировиноградной кислоты (промежуточный продукт расщепления глюкозы), жирных кислот и аминокислот; 2) разрушение ацетильных остатков в Трикарбоновых кислот цикле с освобождением 2 молекул углекислого газа и 4 пар атомов водорода, частично акцептируемых коферментами Никотинамидадениндинуклеотидом и Флавинадениндинуклеотидом и частично переходящих в раствор в виде протонов; 3) перенос электронов и протонов к молекулярному кислороду (образование H2O) - процесс, катализируемый набором дыхательных ферментов и сопряжённый с образованием АТФ (так называемое Окислительное фосфорилирование). Первые две стадии подготавливают третью, в ходе которой в результате последовательных окислительно-восстановительных реакций происходит освобождение основной части энергии, вырабатываемой в клетке. При этом около 50\% энергии в результате окислительного фосфорилирования запасается в форме богатых энергией связей АТФ, а остальная часть её выделяется в виде тепла.

Т. д. обеспечивает образование и постоянное пополнение АТФ в клетках. В случае недостатка в снабжении клеток животных и человека кислородом запасы АТФ не исчерпываются сразу. Их пополнение может происходить в результате включения дополнительных механизмов - систем анаэробного (без участия кислорода) распада углеводов - Гликолиза и гликогенолиза. Однако этот путь энергетически во много раз менее эффективен и не может обеспечить функции и целостность структуры органов и тканей. Биологическая роль Т. д. не исчерпывается существенным вкладом в энергетический обмен организма. На различных его этапах образуются молекулы органических соединений, используемых клетками в качестве промежуточных продуктов для различных биосинтезов. См. также Аденозинфосфорные кислоты, Биоэнергетика, Обмен веществ, Окисление биологическое.

Лит.: Северин С. Е., Биологическое окисление и окислительное фосфорилирование, в кн.: Химические основы процессов жизнедеятельности, М., 1962; Ленинджер А., Превращение энергии в клетке, в кн.: Живая клетка, пер. с англ., 2 изд., М., 1962; его же. Биохимия, пер. с англ., М., 1974; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; Вилли К., Детье В., Биология. (Биологические процессы и законы), пер. с англ., М., 1974.

В. Г. Иванова.

Схема превращения энергии в живых клетках: тканевое дыхание, образование АТФ и пути его использования.

Окисление биологическое         

совокупность реакций окисления, протекающих во всех живых клетках. Основная функция О. б. - обеспечение организма энергией в доступной для использования форме. Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз (См. Оксидоредуктазы). Изучение окисления в организме было начато в 18 в. А. Лавуазье; в дальнейшем значительный вклад в исследование О. б. (его локализация в живых клетках, связь с др. процессами обмена веществ, механизмы ферментативных окислительно-восстановительных реакций, аккумуляция и превращение энергии и др.) внесли О. Варбург, Г. Виланд (Германия), Д. Кейлин, Х. Кребс, П. Митчелл (Великобритания), Д. Грин, А. Ленинджер, Б. Чанс, Э. Рэкер (США), а в СССР - А. Н. Бах, В. И. Палладин, В. А. Энгельгардт, С. Е. Северин, В. А. Белицер, В. П. Скулачев и др.

О. б. в клетках связано с передачей т. н. восстанавливающих эквивалентов (ВЭ) - атомов водорода или электронов - от одного соединения - донора, к другому - акцептору. У аэробов (См. Аэробы) - большинства животных, растений и многих микроорганизмов - конечным акцептором ВЭ служит кислород. Поставщиками ВЭ могут быть как органические, так и неорганические вещества (см. таблицу).

Классификация организмов по источнику энергии и восстанавливающих эквивалентов

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Тип организмов | Источник | Окисляемое соединение | Примеры |

| | энергии | (поставщик | |

| | | восстанавливающих | |

| | | эквивалентов) | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Фотолитотрофы | Свет | Неорганические соединения | Зелёные клетки высших растений, |

| Фотоорганотрофы | Свет | 2О, H2S, S) | синезелёные водоросли, |

| Хемолитотрофы | Реакции | Органические соединения | фотосинтезирующие бактерии |

| Хемоорганотрофы | окисления | Неорганические соединения | Несерные пурпурные бактерии |

| | Реакции | (H2, S, H2S, NH3, Fe2+) | Водородные, серные, |

| | окисления | Органические соединения | денитрифицирующие бактерии, |

| | | | железобактерии |

| | | | Животные, большинство |

| | | | микроорганизмов, |

| | | | нефотосинтезирующие клетки |

| | | | растений |

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

Основной путь использования энергии, освобождающейся при О. б., - накопление её в молекулах аденозинтрифосфорной кислоты (АТФ) и др. макроэргических соединений (См. Макроэргические соединения). О. б., сопровождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит при Гликолизе, окислении α-кетоглутаровой кислоты и при переносе ВЭ в цепи окислительных (дыхательных) ферментов, обычно называют окислительным фосфорилированием (См. Окислительное фосфорилирование) (см. схему).

В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, которое приводит к восстановлению основных поставщиков ВЭ для дыхательных флавинов, Никотинамидадениндинуклеотида (НАД), Никотинамидадениндинуклеотидфосфата (НАДФ) и липоевой кислоты (См. Липоевая кислота). Восстановление этих соединений в значительной мере осуществляется в Трикарбоновых кислот цикле, которым завершаются основные пути окислительного расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Помимо цикла трикарбоновых кислот, некоторое количество восстановленных коферментов (См. Коферменты) - ФАД (Флавинадениндинуклеотида) и НАД - образуется при окислении жирных кислот, а также при окислительном дезаминировании глутаминовой кислоты (НАД) и в пентозофосфатном цикле (См. Пентозофосфатный цикл) (восстановленный НАДФ).

Соотношение и локализация различных механизмов О. б. В расчёте на 1 молекулу глюкозы гликолиз даёт 2 молекулы АТФ, а фосфорилирование в дыхательной цепи - 34 молекулы АТФ. Гликолиз, цикл трикарбоновых кислот и дыхательная цепь функционируют, по-видимому, в клетках всех эукариотов (См. Эукариоты). Окисление жирных кислот у позвоночных поставляет половину энергии, потребляемой печенью, почками, мышцей сердца и покоящимися скелетными мышцами; в клетках мозга оно практически не происходит. Окисление по пентозофосфатному пути активно в печени и лактирующих молочных железах, но незначительно в сердечной и скелетных мышцах.

В жидкой фазе цитоплазмы растворены все ферменты гликолиза. Внутренние мембраны митохондрий (См. Митохондрии), мембраны хлоропластов (См. Хлоропласты) (тилакоидов) и клеточные мембраны бактерий содержат фосфорилирующие цепи переноса электронов. В матриксе митохондрий локализовано окисление жирных кислот, ферменты цикла трикарбоновых кислот и глутаматдегидрогеназа. Во внутренней мембране митохондрий находятся ферменты, окисляющие янтарную и β-оксимасляную кислоты, во внешней - ферменты, участвующие в обмене аминокислот: Моноаминоксидаза и кинуренингидроксилаза. В особых органоидах клетки, т. н. пероксисомах, или микротельцах, вклад которых в суммарное поглощение О2 может достигать в печени 20\%, находится флавиновая оксидаза, окисляющая аминокислоты, гликолевую кислоту и др. субстраты с образованием перекиси водорода, которая затем разлагается каталазой (См. Каталаза) или используется пероксидазами (См. Пероксидазы) в реакциях окисления. В мембранах эндоплазматической сети клетки локализованы гидроксилазы и оксигеназы, организованные в короткие нефосфорилирующие цепи переноса электронов.

Окислительные реакции не всегда сопровождаются накоплением энергии; в ряде случаев они несут функции превращения веществ (например, окисление при образовании жёлчных кислот, стероидных гормонов, на путях превращения аминокислот и др.). При окислении происходит обезвреживание чужеродных и ядовитых для организма веществ (ароматических соединений, недоокисленных продуктов дыхания и др.). О. б., не сопряжённое с накоплением энергии, называется свободным окислением. Его энергетический эффект - образование тепла. По-видимому, система переноса электронов, осуществляющая окислительное фосфорилирование, способна переключаться на свободное окисление при увеличении потребности организма в тепле (у гомойотермных животных (См. Гомойотермные животные)).

Механизм использования энергии окисления. Долгое время оставался неясным вопрос о механизме преобразования энергии, освобождающейся при переносе ВЭ по цепи окислительных ферментов. Согласно т. н. хемиосмотической теории, развитой в 60-х гг. 20 в. (английский биохимик П. Митчелл и др.), энергия сначала используется для создания электрического поля ("+" с одной стороны мембраны и "-" с другой) и разности концентраций ионов Н+ по разные стороны мембраны. Оба фактора (электрическое поле и разность концентраций) могут служить движущей силой для действия фермента АТФ-синтетазы, осуществляющей синтез АТФ. Часть энергии поля может быть прямо использована клеткой для переноса ионов через мембрану, восстановление переносчиков электронов, образования тепла без промежуточного участия АТФ.

Эволюция энергообеспечения в живой природе. Древнейшие организмы, как полагают, существовали в первичной бескислородной атмосфере Земли и были анаэробами (См. Анаэробы) и гетеротрофными организмами (См. Гетеротрофные организмы). Обеспечение клеток энергией шло за счёт процессов типа гликолиза. Возможно, существовал механизм окисления, известный у некоторых современных микроорганизмов: ВЭ передаются через дыхательную цепь на нитрат (NO-3) или на сульфат (SO- -4). Принципиально важным этапом оказалось возникновение у древних одноклеточных организмов механизма фотосинтеза, с которым связывают появление кислорода в атмосфере Земли. В результате стало возможным использование O2, обладающего высоким окислительно-восстановительным потенциалом, в качестве конечного акцептора электронов в дыхательной цепи. Реализация этой возможности произошла при появлении специального фермента - цитохромоксидазы (См. Цитохромоксидаза), восстанавливающей О2, и привела к возникновению биохимического дыхательного аппарата современного типа. Обеспечение энергией у всех аэробов (их клетки содержат митохондрии) основано на таком дыхании. Вместе с тем клетки сохранили ферментный аппарат гликолиза. Образуемая в ходе последнего пировиноградная кислота окисляется далее в цикле трикарбоновых кислот, который, в свою очередь, питает дыхательную цепь электронами. Т. о., эволюция энергетического обмена шла, по-видимому, по пути использования и надстройки уже имевшихся ранее механизмов энергообеспечения. Наличие в клетках ныне существующих организмов биохимических систем гликолиза (в цитоплазме), дыхания (в митохондриях), фотосинтеза (в хлоропластах), а также поразительное сходство механизмов превращения энергии в этих органеллах и в микроорганизмах нередко рассматривают как свидетельство возможного происхождения хлоропластов и митохондрий от древних микроорганизмов-симбионтов. См. также Аденозинфосфорные кислоты, Биоэнергетика, Брожение, Дыхание, Митохондрии, Фотосинтез и лит. при этих статьях.

Лит.: Ленингер А., Превращение энергии в клетке, в кн.: Живая клетка, пер. с англ., М., 1962; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; его же, Трансформация энергии в биомембранах, М., 1972; Малер Г. и Кордес Ю., Основы биологической химии, пер. с англ., М., 1970, гл. 15; Леви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971, гл. 12; Ясайтис А. А., Превращение энергии в митохондриях, М., 1973; Ленинджер А., Биохимия, пер. с англ., М., 1974.

С. А. Остроумов.

Пути образования АТФ при хемоорганотрофном типе энергетического обмена. ФГА - 3-фосфоглицериновый альдегид; ФГК - 3-фосфоглицериновая кислота; ФЕП - фосфоенолпировиноградная кислота; ПК - пировиноградная кислота; Ацетил-КоА - ацетил-кофермент А. Количественные соотношения отдельных путей биологического окисления показаны одинарными и двойными стрелками.

Клеточное дыхание         
Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ, которых в результате процесса образуется 30 (32) и др.

Wikipedia

Клеточное дыхание

Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ, которых в результате процесса образуется 30 (32) и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.

Beispiele aus Textkorpus für Тканевое дыхание
1. Они теряют способность циркулировать по капиллярам, а из-за этого нарушаются обменные процессы в органах, местный сосудистый кровоток и тканевое дыхание.